EDDYFI TUBING PROBES
WE ARE EDDYFI TECHNOLOGIES

Non-destructive testing (NDT) of critical components is a vital part of integrity management and safety in such industries as nuclear, power generation, oil and gas, and aerospace. World-class engineering, nimble manufacturing, and some of the best minds in advanced testing technologies allow us to offer you the best performing, most reliable advanced electromagnetic hardware and software essential to you and your business.

EDDYFI TECHNOLOGIES

Eddyfi Technologies is headquartered in beautiful Québec, Canada, at the heart of the city’s advanced NDT cluster. We are the most dynamic company in the field of advanced NDT equipment—we’ve made it one of our missions to push the limits of electromagnetic testing to new heights, which we achieve by designing new generations of standard and specialized probes. This is how we manage to offer complete solutions for the inspection of critical components.

THE EDDYFI PROMISE

Unparalleled Quality and Durability

Eddyfi® tubing probes are designed and manufactured using high-performance standards, including top-of-the-line polys, providing top-quality signals over their long lifespan.

Fast Delivery

All Eddyfi probes are manufactured at our Québec facility. Many of them are also kept in stock in our various offices for quick delivery. Standard probe orders of five or less typically ship within three days.

Custom Probes

Eddyfi Technologies has the expertise, engineering, and manufacturing flexibility to supply custom-made solutions for the most challenging tubing applications.

Specialized Probe Technology

Our experts use modeling software, advanced materials and proprietary techniques to engineer probes like DefHi® array to push back the limits of tubing inspection.

For more information, write to probes@eddyfi.com
STANDARD BOBBIN PROBES

A new standard in durability. With their advanced polymer body and stainless steel wear-resistant guides, they are easier to use and longer lasting than most. They are specifically designed to inspect the non-ferromagnetic tubing in condensers, feedwater heaters, and heat exchangers.

FEATURES

- Easy to use
- Designed for non-ferromagnetic tubing
- Uncompromising durability
- Light, advanced polymer body
- Wear-resistant guides
- Highly kink-resistant cable
- 4-pin Amphenol connector

PRBT-ECT-BBST-WWWXX-NZZ

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>070</td>
<td>7.0 mm</td>
</tr>
<tr>
<td>072</td>
<td>7.2 mm</td>
</tr>
<tr>
<td>074</td>
<td>7.4 mm</td>
</tr>
<tr>
<td>250</td>
<td>25.0 mm</td>
</tr>
<tr>
<td>255</td>
<td>25.5 mm</td>
</tr>
<tr>
<td>500</td>
<td>50.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Min. Max. Central</td>
<td></td>
</tr>
<tr>
<td>UF</td>
<td>1 10 5</td>
<td></td>
</tr>
<tr>
<td>LF</td>
<td>10 100 50</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>50 500 250</td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>100 1000 500</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15 m (50 ft.)</td>
</tr>
<tr>
<td>20</td>
<td>20 m (65 ft.)</td>
</tr>
<tr>
<td>30</td>
<td>30 m (98 ft.)</td>
</tr>
</tbody>
</table>

Probe Diameters

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>3.40</td>
</tr>
<tr>
<td>3.05</td>
</tr>
<tr>
<td>2.77</td>
</tr>
<tr>
<td>2.41</td>
</tr>
<tr>
<td>2.11</td>
</tr>
<tr>
<td>1.83</td>
</tr>
<tr>
<td>1.65</td>
</tr>
<tr>
<td>1.47</td>
</tr>
<tr>
<td>1.24</td>
</tr>
<tr>
<td>1.07</td>
</tr>
<tr>
<td>0.89</td>
</tr>
<tr>
<td>0.81</td>
</tr>
<tr>
<td>0.71</td>
</tr>
<tr>
<td>0.65</td>
</tr>
<tr>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BWG</th>
<th>TUBE OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.53</td>
<td>0.375</td>
</tr>
<tr>
<td>12.70</td>
<td>0.500</td>
</tr>
<tr>
<td>15.87</td>
<td>0.625</td>
</tr>
<tr>
<td>19.05</td>
<td>0.750</td>
</tr>
<tr>
<td>22.22</td>
<td>0.875</td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
</tr>
<tr>
<td>31.75</td>
<td>1.250</td>
</tr>
<tr>
<td>38.10</td>
<td>1.500</td>
</tr>
<tr>
<td>50.80</td>
<td>2.000</td>
</tr>
</tbody>
</table>
Probe Frequencies

Tube Wall Thickness

<table>
<thead>
<tr>
<th>BWG</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
<td>1.24</td>
<td>1.07</td>
<td>0.89</td>
<td>0.81</td>
<td>0.71</td>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td>0.135</td>
<td>0.120</td>
<td>0.109</td>
<td>0.095</td>
<td>0.083</td>
<td>0.072</td>
<td>0.065</td>
<td>0.058</td>
<td>0.049</td>
<td>0.042</td>
<td>0.035</td>
<td>0.032</td>
<td>0.028</td>
<td>0.025</td>
<td>0.022</td>
</tr>
</tbody>
</table>

Material

- **Aluminum**
- **Aluminum bronze**
- **Brass (admiralty)**
- **Brass (70/30)**
- **Brass (85/15)**
- **Brass (95/5)**
- **Copper**
- **Copper-nickel (70/30)**
- **Copper-nickel (90/10)**
- **Copper-nickel (95/5)**
- **INCONEL® 600**
- **Stainless steel 304/316**
- **Titanium 99%**
- **Zirconium**
DETACHABLE BOBBIN PROBES

Durable and economical, with their polymer body and wear-resistant stainless steel guides, they are easier to use and longer lasting than most. Their detachable cable makes the probes cheaper to maintain if you already have compatible cables (see page 33). Specifically designed to inspect the non-ferromagnetic tubing found in condensers, feedwater heaters, and heat exchangers.

FEATURES

- Easy to use
- Designed for non-ferromagnetic tubing
- Uncompromising durability
- Light, advanced polymer body
- Wear-resistant guides
- Detachable LEMO connector with fully protected pins

PRBT-ECT-BBST-WWWXX-D

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>11.0 mm</td>
</tr>
<tr>
<td>112</td>
<td>11.2 mm</td>
</tr>
<tr>
<td>114</td>
<td>11.4 mm</td>
</tr>
<tr>
<td>250</td>
<td>25.0 mm</td>
</tr>
<tr>
<td>255</td>
<td>25.5 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>UF</td>
<td>1</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
</tr>
<tr>
<td>MF</td>
<td>50</td>
</tr>
<tr>
<td>HF</td>
<td>100</td>
</tr>
</tbody>
</table>

Probe Diameters

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>TUBE OD</td>
</tr>
<tr>
<td>15.87</td>
</tr>
<tr>
<td>19.05</td>
</tr>
<tr>
<td>22.22</td>
</tr>
<tr>
<td>25.40</td>
</tr>
<tr>
<td>31.75</td>
</tr>
<tr>
<td>38.10</td>
</tr>
<tr>
<td>50.80</td>
</tr>
<tr>
<td>MATERIAL</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Aluminum</td>
</tr>
<tr>
<td>Aluminum bronze</td>
</tr>
<tr>
<td>Brass (admiralty)</td>
</tr>
<tr>
<td>Brass (70/30)</td>
</tr>
<tr>
<td>Brass (85/15)</td>
</tr>
<tr>
<td>Brass (95/5)</td>
</tr>
<tr>
<td>Copper</td>
</tr>
<tr>
<td>Copper-nickel (70/30)</td>
</tr>
<tr>
<td>Copper-nickel (90/10)</td>
</tr>
<tr>
<td>Copper-nickel (95/5)</td>
</tr>
<tr>
<td>INCONEL® 600</td>
</tr>
<tr>
<td>Stainless steel 304/316</td>
</tr>
<tr>
<td>Titanium 99%</td>
</tr>
<tr>
<td>Zirconium</td>
</tr>
</tbody>
</table>
FLEXIBLE BOBBIN PROBES

Designed to inspect the non-ferromagnetic U-bend tubing of condensers, feedwater heaters, and heat exchangers in a single pass. The welded titanium heads and centering balls offer excellent signal quality, even in U-bends, and make the probes more durable and easy to use.

FEATURES

- Easy to use
- Designed for non-ferromagnetic tubing
- Uncompromising durability
- Titanium head and flexible stainless steel shaft
- Centering ball for excellent signal quality
- Highly kink-resistant cable
- 4-pin Amphenol connector
- U-bend (180°) radiuses as small as 101.6 mm (4 in)

Probe Diameters

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>11.0 mm</td>
</tr>
<tr>
<td>112</td>
<td>11.2 mm</td>
</tr>
<tr>
<td>114</td>
<td>11.4 mm</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>254</td>
<td>25.4 mm</td>
</tr>
</tbody>
</table>

CODE FREQUENCY (kHz)

<table>
<thead>
<tr>
<th>CODE</th>
<th>UF</th>
<th>Min.</th>
<th>Max.</th>
<th>Central</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>10</td>
<td>100</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>100</td>
<td>1000</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

POLY

<table>
<thead>
<tr>
<th>CODE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25 m (82 ft.)</td>
</tr>
</tbody>
</table>

TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
<td>1.24</td>
<td>1.07</td>
<td>0.89</td>
<td>0.81</td>
<td>0.71</td>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td>0.135</td>
<td>0.120</td>
<td>0.109</td>
<td>0.095</td>
<td>0.083</td>
<td>0.072</td>
<td>0.065</td>
<td>0.058</td>
<td>0.049</td>
<td>0.042</td>
<td>0.035</td>
<td>0.032</td>
<td>0.028</td>
<td>0.025</td>
<td>0.022</td>
</tr>
<tr>
<td>15.87</td>
<td>0.625</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>110</td>
<td>114</td>
<td>118</td>
<td>122</td>
<td>126</td>
<td>128</td>
<td>132</td>
<td>134</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>19.05</td>
<td>0.750</td>
<td>114</td>
<td>118</td>
<td>126</td>
<td>134</td>
<td>140</td>
<td>144</td>
<td>148</td>
<td>152</td>
<td>156</td>
<td>158</td>
<td>162</td>
<td>164</td>
<td>166</td>
<td>166</td>
</tr>
<tr>
<td>22.22</td>
<td>0.875</td>
<td>144</td>
<td>148</td>
<td>156</td>
<td>164</td>
<td>168</td>
<td>174</td>
<td>178</td>
<td>180</td>
<td>186</td>
<td>188</td>
<td>192</td>
<td>194</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
<td>174</td>
<td>178</td>
<td>186</td>
<td>194</td>
<td>198</td>
<td>204</td>
<td>208</td>
<td>210</td>
<td>216</td>
<td>218</td>
<td>222</td>
<td>224</td>
<td>224</td>
<td>226</td>
</tr>
</tbody>
</table>

Note: Recommended optimal values for clean tubes not suffering from ovalization in U-bends. Dirty, ovalized tubes may need smaller probes. The probe can always be 0.2 mm (0.008 in) smaller than the optimal value.
Probe Frequencies

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>BWG</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
<td>1.24</td>
<td>1.07</td>
<td>0.89</td>
<td>0.81</td>
<td>0.71</td>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td>0.135</td>
<td>0.120</td>
<td>0.109</td>
<td>0.095</td>
<td>0.083</td>
<td>0.072</td>
<td>0.065</td>
<td>0.058</td>
<td>0.049</td>
<td>0.042</td>
<td>0.035</td>
<td>0.032</td>
<td>0.028</td>
<td>0.025</td>
<td>0.022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>Aluminum bronze</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Brass (admiralty)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
</tr>
<tr>
<td>Brass (70/30)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>Brass (85/15)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>Brass (95/5)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>Copper</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
</tr>
<tr>
<td>Copper-nickel (70/30)</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Copper-nickel (90/10)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Copper-nickel (95/5)</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>INCONEL® 600</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>HF</td>
<td>HF</td>
</tr>
<tr>
<td>Stainless steel 304/316</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>HF</td>
<td>HF</td>
</tr>
<tr>
<td>Titanium 99%</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Zirconium</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
</tbody>
</table>
MAGNETIC SATURATION BOBBIN PROBES

Designed to inspect ferritic stainless, duplex, and nickel-based alloy tubes used in condensers and feedwater heaters. Strong rare-earth magnets provide complete tube wall magnetic saturation, enabling test frequencies common for non-magnetic materials of similar wall thickness and conductivity. Can detect and size ID pitting, OD wear, and MIC attacks.

FEATURES

- For ferritic stainless, duplex, and nickel-based
- Uncompromising durability
- Replaceable, hardened-steel wear guide
- Highly kink-resistant cable
- 4-pin Amphenol connector
- Optimal saturation level

Probe Diameters

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
<th>BWG</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td>3.40</td>
<td>2.77</td>
<td>2.11</td>
<td>1.65</td>
<td>1.24</td>
<td>0.89</td>
<td>0.71</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td></td>
<td>0.135</td>
<td>0.109</td>
<td>0.083</td>
<td>0.065</td>
<td>0.049</td>
<td>0.035</td>
<td>0.028</td>
<td>0.022</td>
</tr>
<tr>
<td>TUBE OD</td>
<td></td>
<td>12.70</td>
<td>0.500</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.092*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.87</td>
<td>0.625</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.124*</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.05</td>
<td>0.750</td>
<td>–</td>
<td>1.24*</td>
<td>1.16</td>
<td>1.48</td>
<td>1.56</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.22</td>
<td>0.875</td>
<td>–</td>
<td>1.56</td>
<td>1.70</td>
<td>1.80</td>
<td>1.88</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.40</td>
<td>1.000</td>
<td>–</td>
<td>1.88</td>
<td>2.00</td>
<td>2.10</td>
<td>2.18</td>
<td>2.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.75</td>
<td>1.250</td>
<td>2.30</td>
<td>2.44</td>
<td>2.56</td>
<td>2.65</td>
<td>2.78</td>
<td>2.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.10</td>
<td>1.500</td>
<td>3.00</td>
<td>3.10</td>
<td>3.20</td>
<td>3.30</td>
<td>3.40</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.80</td>
<td>2.000</td>
<td>4.20</td>
<td>4.30</td>
<td>4.40</td>
<td>4.50</td>
<td>4.60</td>
<td>–</td>
</tr>
</tbody>
</table>

*Offers less sensitivity to external defects, because the core section is significantly smaller than the tube section of the probe. Sensitivity to internal defects remains very high.
TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>3.40</td>
<td>2.77</td>
<td>2.11</td>
<td>1.65</td>
<td>1.24</td>
<td>0.89</td>
<td>0.71</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td>0.135</td>
<td>0.109</td>
<td>0.083</td>
<td>0.065</td>
<td>0.049</td>
<td>0.035</td>
<td>0.028</td>
<td>0.022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>MONEL®</th>
<th>LF</th>
<th>LF</th>
<th>LF</th>
<th>LF</th>
<th>MF</th>
<th>MF</th>
<th>MF</th>
<th>MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel 200</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>–</td>
</tr>
<tr>
<td>Stainless steel grade 439</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>–</td>
</tr>
<tr>
<td>Duplex Stainless steel (2205, 3RE60)</td>
<td>–</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
AIR CONDITIONER PROBES

Durable and economical, with their stainless steel laser welded probe assembly, they are easier to use and longer lasting than most available on the market. Combining the ECT bobbin coils with the AC coil offer a larger defects variety detection. Their detachable cable makes the probes affordable by allowing a better user flexibility, with a single cable being reused for multiple heads. They are also specifically designed to inspect non-ferromagnetic tubes such as those found in air conditioner systems.

FEATURES

- Easy to use
- Designed for non-ferromagnetic tubes
- Uncompromising durability
- Improved connector with protected pins
- Wear and water-resistant
- Lightweight detachable probe head

PRB-T-ECT-BBAC-WWWXX-D

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>11.0 mm</td>
</tr>
<tr>
<td>112</td>
<td>11.2 mm</td>
</tr>
<tr>
<td>114</td>
<td>11.4 mm</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>230</td>
<td>23.0 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>UF</td>
<td>1</td>
</tr>
<tr>
<td>LF</td>
<td>10</td>
</tr>
</tbody>
</table>

Probe Diameters

Depending on the AC/HVAC manufacturer, air conditioner tubes can have an inside diameter and/or outside diameter fins. Also, dimensional specifications sometimes include the fins, but sometimes don’t. The most important information for the probe selection is the tube inside diameter (probe diameter selection) and the root thickness (probe frequency selection).

As the AC probes need to fill an optimal portion of the tube inner diameter, their diameters are offered from 11.0 to 23.0 mm by increments of 0.2 mm. It is recommended to select a probe diameter to match a fill factor around 88%. The following formula can be used to find the diameter that matches this fill factor:

\[\text{Diameter} = 2 \times \sqrt{0.88} \times \left(\frac{\text{tube inside diameter}}{2} \right)^2 \]

Standard probe dimension should be selected using the closest result to the above formula. For instance, with a tube ID of 14.65 mm, the result of the formula would be 13.74 mm. The 13.8 mm probe should, therefore, be selected. When possible, it is also recommended to keep a lift-off between 0.3 mm and 1 mm around the probe.

Probe Frequencies

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Brass (admiralty)</th>
<th>Brass (70/30)</th>
<th>Brass (85/15)</th>
<th>Brass (95/5)</th>
<th>Copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
<td>UF</td>
</tr>
</tbody>
</table>

eddyfi.com/applications/tubing-applications
DEFHI ECA PROBES

Designed to inspect the non-ferromagnetic tubing of condensers, feedwater heaters, and heat exchangers. Excellent at detecting circumferential cracks at tube support plates and tubesheets (a major limitation of bobbin probes). DefHi probes can also detect and size usual defects such as wear, corrosion, pitting, micro-pitting, and stress-corrosion cracking. High-frequency DefHi does not have titanium sleeves, as they affect signal quality. Instead, their sleeve is made of highly resistant plastic.

FEATURES

- High-definition, multiplexed ECA probe
- Designed for non-ferromagnetic tubing
- Combination bobbin and array probe
- Size circumferential and axial cracks
- Optimum resolution and uniform sensitivity with oval coil technology
- Highly kink-resistant cable, replaceable centering devices
- Wider frequency range (HW to HF)
- Analysis with bobbin strip charts and array C-scans

<table>
<thead>
<tr>
<th>OPTION</th>
<th>MULTIPLEXER</th>
<th>BODY</th>
<th>CONFIGURATION</th>
<th>DIAMETER</th>
<th>FREQUENCY</th>
<th>POLY LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECTANE2/PROBE</td>
<td>RIGID/FLEX</td>
<td>BOBBIN</td>
<td>CIRCUM.</td>
<td>AXIAL</td>
<td>DIA</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>R</td>
<td>B</td>
<td>C</td>
<td>–</td>
<td>Probe diameter 3-digit code. (e.g., 146 = 14.6 mm)</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>R</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>Contact for availability of required diameters</td>
</tr>
</tbody>
</table>

* Maximum MF reduced to 400 kHz with 15 m cable.
** Maximum HF reduced to 1 MHz with 15 m cable.

Probes Diameters

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>TUBE OD</td>
</tr>
<tr>
<td>12.70</td>
</tr>
<tr>
<td>15.87</td>
</tr>
<tr>
<td>19.05</td>
</tr>
<tr>
<td>22.22</td>
</tr>
<tr>
<td>25.40</td>
</tr>
</tbody>
</table>

eddyfi.com/applications/tubing-applications
TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
<td>1.24</td>
<td>1.07</td>
<td>0.89</td>
<td>0.81</td>
<td>0.71</td>
<td>0.65</td>
<td>0.56</td>
</tr>
<tr>
<td>in</td>
<td>0.135</td>
<td>0.120</td>
<td>0.109</td>
<td>0.095</td>
<td>0.083</td>
<td>0.072</td>
<td>0.065</td>
<td>0.058</td>
<td>0.049</td>
<td>0.042</td>
<td>0.035</td>
<td>0.032</td>
<td>0.028</td>
<td>0.025</td>
<td>0.022</td>
</tr>
</tbody>
</table>

MATERIAL

- **Brass (admiralty)**
 - HW HW HW HW LF LF LF LF LF
- **Brass (70/30)**
 - HW HW HW HW LF LF LF LF LF
- **Brass (85/15)**
 - HW HW HW HW LF LF LF LF LF
- **Brass (95/5)**
 - HW HW HW HW LF LF LF LF LF
- **Copper**
 - HW HW HW HW LF LF LF LF LF
- **Copper-nickel (70/30)**
 - HW HW HW HW LF LF LF LF LF
- **Copper-nickel (90/10)**
 - HW HW HW HW LF LF LF LF MF MF MF MF
- **Copper-nickel (95/5)**
 - HW HW HW HW LF LF LF LF LF MF MF MF MF
- **INCONEL® 600**
 - LF LF LF LF LF MF MF MF MF HF HF HF HF
- **Stainless steel 304/316**
 - HW LF LF LF LF MF MF MF MF HF HF HF HF
- **Titanium 99%**
 - HW HW HW LF LF LF LF LF LF MF MF MF MF HF HF HF HF
- **Zirconium**
 - HW HW HW LF LF LF LF LF LF MF MF MF MF MF MF MF MF HF HF HF HF

Probe Frequencies

<table>
<thead>
<tr>
<th>FREQ. CONFIG.</th>
<th>HW</th>
<th>BC</th>
<th>LF</th>
<th>BCA</th>
<th>MF</th>
<th>BC</th>
<th>BCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>096-106</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>36</td>
<td>18</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>114-140</td>
<td>12</td>
<td>36</td>
<td>18</td>
<td>54</td>
<td>18</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>148-178</td>
<td>12</td>
<td>36</td>
<td>24</td>
<td>72</td>
<td>24</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>186-196</td>
<td>18</td>
<td>54</td>
<td>24</td>
<td>72</td>
<td>24</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>200-230</td>
<td>18</td>
<td>54</td>
<td>30</td>
<td>90</td>
<td>30</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>096-106</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>36</td>
<td>18</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>132-136</td>
<td>18</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162-170</td>
<td>24</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196-200</td>
<td>30</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226-230</td>
<td>36</td>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SINGLE-DRIVER RFT PROBES

Because their driver and receiver coils produce similar responses, they are optimized for absolute signal analysis. From diameters 20 mm (0.787 in) and beyond, the probe’s body is made of light advanced polymer. Under 20 mm, they are equipped with stainless steel sleeves. The probes are particularly well suited to detecting common defects (corrosion, erosion, wear, pitting) and to the ferromagnetic tubing in feedwater heaters, heat exchangers, and piping.

FEATURES

- Preamplifier in probe head (30 dB)
- Optimized for absolute signal analysis
- Uncompromising durability
- Highly kink-resistant, very flexible cable
- Low friction noise
- 19-pin Amphenol connector

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>8.5 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>9.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10.0 mm</td>
<td></td>
<td>LF 0.01 0.4 0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MF* 0.05 2 0.3</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>20.0 mm</td>
<td></td>
<td>HF 0.5 20 2.5</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>22.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>44.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CODE LENGTH

<table>
<thead>
<tr>
<th>CODE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 m (65 ft.)</td>
</tr>
<tr>
<td>30</td>
<td>30 m (98 ft.)</td>
</tr>
</tbody>
</table>

* Typical frequency range

Probe Diameters
TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>mm</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.05</td>
<td>0.238</td>
</tr>
<tr>
<td>5</td>
<td>5.59</td>
<td>0.220</td>
</tr>
<tr>
<td>6</td>
<td>5.16</td>
<td>0.206</td>
</tr>
<tr>
<td>7</td>
<td>4.57</td>
<td>0.180</td>
</tr>
<tr>
<td>8</td>
<td>4.19</td>
<td>0.165</td>
</tr>
<tr>
<td>9</td>
<td>3.76</td>
<td>0.148</td>
</tr>
<tr>
<td>10</td>
<td>3.40</td>
<td>0.135</td>
</tr>
<tr>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
</tr>
<tr>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
</tr>
</tbody>
</table>

MATERIAL

<table>
<thead>
<tr>
<th>Probe Frequencies</th>
<th>Carbon steel A178, A179, A192, A214</th>
<th>Cast iron (gray)</th>
<th>Ductile iron</th>
<th>Nickel 200</th>
<th>Stainless steel 439, A268, TP439</th>
<th>Duplex Stainless steel (2205), SRE60, A789</th>
</tr>
</thead>
</table>
SINGLE-DRIVER RFT FLEXIBLE PROBES

Welded on a flexible stainless steel shaft, each driver and receiver modules are designed to be resistant and waterproof to manage a whole heat exchanger U-bend tube in a single pass. The probes are particularly well suited to detect common defects (corrosion, erosion, wear, pitting) and to inspect the ferromagnetic tubing in feedwater heaters, heat exchangers, and piping.

FEATURES

- Easy to use
- Preamplifier in probe head (30 dB)
- Optimized for absolute signal analysis
- Highly kink-resistant cable
- Welded stainless steel head and flexible shaft
- Uncompromising durability
- Low friction noise
- 19-pin Amphenol connector
- Can pass U-bends (180°) of 7 x tubes OD and higher

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.0 mm</td>
</tr>
<tr>
<td>110</td>
<td>11.0 mm</td>
</tr>
<tr>
<td>120</td>
<td>12.0 mm</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>220</td>
<td>22.0 mm</td>
</tr>
<tr>
<td>240</td>
<td>24.0 mm</td>
</tr>
<tr>
<td>260</td>
<td>26.0 mm</td>
</tr>
</tbody>
</table>

CODE FREQUENCY (kHz)

<table>
<thead>
<tr>
<th>CODE</th>
<th>Min.</th>
<th>Max.</th>
<th>Central</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>0.01</td>
<td>0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>MF*</td>
<td>0.05</td>
<td>2</td>
<td>0.3</td>
</tr>
<tr>
<td>HF</td>
<td>0.5</td>
<td>20</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* Typical frequency range

CODE DIAMETER

<table>
<thead>
<tr>
<th>CODE</th>
<th>LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25 m (82 ft.)</td>
</tr>
</tbody>
</table>

TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>6.05</td>
<td>5.59</td>
<td>5.16</td>
<td>4.57</td>
<td>4.19</td>
<td>3.76</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
<td>1.24</td>
</tr>
<tr>
<td>in</td>
<td>0.238</td>
<td>0.220</td>
<td>0.206</td>
<td>0.180</td>
<td>0.165</td>
<td>0.148</td>
<td>0.135</td>
<td>0.120</td>
<td>0.109</td>
<td>0.095</td>
<td>0.083</td>
<td>0.072</td>
<td>0.065</td>
<td>0.058</td>
<td>0.049</td>
</tr>
</tbody>
</table>

PROBE OD

<table>
<thead>
<tr>
<th>BWG</th>
<th>15.87</th>
<th>0.625</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>100</th>
<th>100</th>
<th>110</th>
<th>110</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>19.05</td>
<td>0.750</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>110</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>130</td>
<td>130</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>in</td>
<td>0.750</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>PROBE OD</td>
<td>22.22</td>
<td>0.875</td>
<td>–</td>
<td>100</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>130</td>
<td>140</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>160</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
<td>120</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>170</td>
<td>180</td>
<td>180</td>
<td>190</td>
<td>190</td>
<td>190</td>
<td>200</td>
</tr>
<tr>
<td>31.75</td>
<td>1.250</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>200</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>260</td>
<td>260</td>
</tr>
</tbody>
</table>
TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>mm</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.05</td>
<td>0.238</td>
</tr>
<tr>
<td>5</td>
<td>5.59</td>
<td>0.220</td>
</tr>
<tr>
<td>6</td>
<td>5.16</td>
<td>0.206</td>
</tr>
<tr>
<td>7</td>
<td>4.57</td>
<td>0.180</td>
</tr>
<tr>
<td>8</td>
<td>4.19</td>
<td>0.165</td>
</tr>
<tr>
<td>9</td>
<td>3.76</td>
<td>0.148</td>
</tr>
<tr>
<td>10</td>
<td>3.40</td>
<td>0.135</td>
</tr>
<tr>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
</tr>
<tr>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
</tr>
</tbody>
</table>

MATERIAL

- **Carbon steel**
 - A178, A179, A192, A214
 - LF LF LF LF MF MF MF MF MF MF MF MF MF MF

- **Cast iron (gray)**
 - MF MF

- **Ductile iron**
 - LF LF LF MF MF

- **Nickel 200**
 - MF HF HF

- **Stainless steel**
 - 439, A268, TP439
 - MF MF MF HF HF

- **Duplex Stainless steel**
 - (2205), SRE60, A789
 - HF HF

Probe Frequencies

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>LF</td>
</tr>
<tr>
<td>MF</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>MF</td>
</tr>
</tbody>
</table>

- LF: Low Frequency
- MF: Medium Frequency
- HF: High Frequency
SINGLE-DRIVER RFT PROBES FOR BOILERS

Equipped with spring-loaded centering devices, they are waterproof and extremely flexible for easy controlled travel along tight bends. The probes are offered in diameters corresponding to the most common boiler tubes, but custom probe diameters are available on demand. Particularly well suited to detecting common defects (corrosion, erosion, wear, pitting) and ferromagnetic tubing of boilers and piping.

FEATURES

- Preamplifier in probe head (30 dB)
- Spring-loaded centering devices
- Highly flexible design
- Uncompromising durability
- Highly kink-resistant cable
- Waterproof
- 19-pin Amphenol connector
- Can pass elbow-shaped bend of 3 x tube OD and higher

Probe Diameters

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>26.0 mm</td>
<td>320</td>
<td>32.0 mm</td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>36.0 mm</td>
<td>400</td>
<td>40.0 mm</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>45.0 mm</td>
<td>500</td>
<td>50.0 mm</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>70.0 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRBT-RFT-SDBL-WWWXX-NZZ

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20 m (65 ft.)</td>
<td>30</td>
<td>30 m (98 ft.)</td>
<td></td>
</tr>
</tbody>
</table>

TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>TUBE OD</th>
<th>38.10</th>
<th>50.80</th>
<th>63.50</th>
<th>76.20</th>
<th>88.90</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>350</td>
</tr>
<tr>
<td>in</td>
<td></td>
<td>0.300</td>
<td>0.284</td>
<td>0.259</td>
<td>0.238</td>
<td>0.220</td>
</tr>
</tbody>
</table>

* Typical frequency range
Probe Frequencies

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel A178, A179, A192, A214</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Cast iron (gray)</td>
<td>LF</td>
<td>MF</td>
</tr>
<tr>
<td>Ductile iron</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
</tr>
<tr>
<td>Nickel 200</td>
<td>LF</td>
<td>LF</td>
<td>LF</td>
<td>MF</td>
</tr>
<tr>
<td>Stainless steel 439, A268, TP439</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
<td>HF</td>
</tr>
<tr>
<td>Duplex Stainless steel (2205), SRE60, A789</td>
<td>MF</td>
<td>MF</td>
<td>MF</td>
<td>HF</td>
</tr>
</tbody>
</table>
DUAL-DRIVER RFT PROBES

Optimized for differential signal analysis and defects close to tube support plates. From 20.0 mm (0.787 in) and beyond, the probe’s body is made of light, advanced polymer. Under 20 mm, the probes are equipped with stainless steel sleeves. They are particularly well suited to detecting common defects (corrosion, erosion, wear, pitting) and ferromagnetic tubing of feedwater heaters, heat exchangers, and piping.

FEATURES
- Preamplifier in probe head (30 dB)
- Optimized for differential signal analysis
- Uncompromising durability
- Highly kink-resistant, very flexible cable
- Low friction noise
- 19-pin Amphenol connector

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.0 mm</td>
<td>-</td>
<td>Min. 0.01</td>
<td>20</td>
</tr>
<tr>
<td>110</td>
<td>11.0 mm</td>
<td>-</td>
<td>Max. 0.4</td>
<td>20 m (65 ft.)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>MF*</td>
<td>0.05</td>
<td>30 m (98 ft.)</td>
</tr>
<tr>
<td>200</td>
<td>20.0 mm</td>
<td>HF</td>
<td>0.5</td>
<td>...</td>
</tr>
<tr>
<td>220</td>
<td>22.0 mm</td>
<td></td>
<td>20</td>
<td>...</td>
</tr>
<tr>
<td>440</td>
<td>44.0 mm</td>
<td></td>
<td>2.5</td>
<td>...</td>
</tr>
</tbody>
</table>

PRBT-RFT-DDST-WWWXX-NZZ

CODE DIAMETER

POLY LENGTH

20 m (65 ft.)
30 m (98 ft.)

Probe Diameters

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWG</td>
</tr>
<tr>
<td>mm</td>
</tr>
<tr>
<td>in</td>
</tr>
<tr>
<td>TUBE OD</td>
</tr>
<tr>
<td>15.87</td>
</tr>
<tr>
<td>19.05</td>
</tr>
<tr>
<td>22.22</td>
</tr>
<tr>
<td>25.40</td>
</tr>
<tr>
<td>31.75</td>
</tr>
<tr>
<td>38.10</td>
</tr>
<tr>
<td>50.80</td>
</tr>
</tbody>
</table>
TUBE WALL THICKNESS

<table>
<thead>
<tr>
<th>BWG</th>
<th>mm</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6.05</td>
<td>0.238</td>
</tr>
<tr>
<td>5</td>
<td>5.59</td>
<td>0.220</td>
</tr>
<tr>
<td>6</td>
<td>5.16</td>
<td>0.205</td>
</tr>
<tr>
<td>7</td>
<td>4.57</td>
<td>0.180</td>
</tr>
<tr>
<td>8</td>
<td>4.07</td>
<td>0.165</td>
</tr>
<tr>
<td>9</td>
<td>3.76</td>
<td>0.155</td>
</tr>
<tr>
<td>10</td>
<td>3.40</td>
<td>0.148</td>
</tr>
<tr>
<td>11</td>
<td>3.05</td>
<td>0.135</td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.120</td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.109</td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.095</td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.083</td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.072</td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.065</td>
</tr>
<tr>
<td>18</td>
<td>1.24</td>
<td>0.058</td>
</tr>
</tbody>
</table>

MATERIAL

<table>
<thead>
<tr>
<th>Material</th>
<th>Probe Frequencies</th>
</tr>
</thead>
</table>

Probe Frequencies
DUAL-RECEIVER RFT PROBES

Composed of a single Exciter/Driver in the center and two sets of receiver coils at the ends, the signal obtained shortens the blinded regions close to external features, allowing for increased detection at the proximity of these regions. The RFT-SDDR is good for any ferrous heat exchangers and boilers, small or large.

FEATURES

- Dual receiver coils
- Higher detection near support plates and other external features
- Both absolute (ABS) and differential (DIFF) signals at each probe ends (Lead and Trail)
- Onboard 30 dB preamplifiers
- Uncompromising durability
- 19-pin Amphenol connector
- Highly kink-resistant cable

<table>
<thead>
<tr>
<th>CODE</th>
<th>DIAMETER</th>
<th>CODE</th>
<th>FREQUENCY (kHz)</th>
<th>POLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.0 mm</td>
<td>–</td>
<td>Min. 0.01 0.05</td>
<td>–</td>
</tr>
<tr>
<td>110</td>
<td>11.0 mm</td>
<td>–</td>
<td>Max. 0.4 0.5</td>
<td>–</td>
</tr>
<tr>
<td>220</td>
<td>22.0 mm</td>
<td>LF</td>
<td>Central 0.05 2</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>24.0 mm</td>
<td>MF*</td>
<td>2.0 0.3</td>
<td>–</td>
</tr>
<tr>
<td>500</td>
<td>50.0 mm</td>
<td>HF</td>
<td>2.0 2.5</td>
<td>–</td>
</tr>
</tbody>
</table>

* Typical frequency range

Probe Diameters

<table>
<thead>
<tr>
<th>TUBE OD</th>
<th>BWG</th>
<th>TUBE WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>in</td>
<td>15.87 0.625 0.238 0.220 0.206 0.180 0.165 0.148 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
</tr>
<tr>
<td>19.05</td>
<td>0.750 – – – – – – – – – 0.06 – – – – – – – – – – – – – – – 0.049</td>
<td></td>
</tr>
<tr>
<td>22.22</td>
<td>0.875 – 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>25.40</td>
<td>0.960 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>31.75</td>
<td>1.000 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>38.10</td>
<td>1.250 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>50.80</td>
<td>1.500 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>63.50</td>
<td>2.480 0.250 0.180 0.165 0.150 0.135 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049</td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td>BWG</td>
<td>4</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Carbon steel A178, A179, A192, A214</td>
<td></td>
<td>LF</td>
</tr>
<tr>
<td>Cast iron (gray)</td>
<td></td>
<td>MF</td>
</tr>
<tr>
<td>Ductile iron</td>
<td></td>
<td>LF</td>
</tr>
<tr>
<td>Nickel 200</td>
<td></td>
<td>MF</td>
</tr>
<tr>
<td>Stainless steel 439, A268, TP439</td>
<td></td>
<td>MF</td>
</tr>
<tr>
<td>Duplex stainless steel (2205), SRE60, A789</td>
<td></td>
<td>HF</td>
</tr>
</tbody>
</table>
NFT PROBES

Designed to inspect aluminum-finned carbon steel tubes in fin-fan coolers. The probe coil configuration allows reliably detecting internal defects such as corrosion, erosion, and axial cracking. The probes are sleeved with stainless steel.

FEATURES

- Optimized for internal defect detection
- Designed to inspect aluminum-finned carbon steel tubes in fin-fan coolers
- Uncompromising durability
- Stainless steel body
- Highly kink-resistant, very flexible cable
- Superior absolute baseline signal
- 19-pin Amphenol connector

<table>
<thead>
<tr>
<th>TUBE OD</th>
<th>TUBE WT</th>
<th>DIAMETER</th>
<th>FREQUENCY</th>
<th>POLY</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>IN</td>
<td>CODE</td>
<td>CODE</td>
<td>MM</td>
<td>IN</td>
</tr>
<tr>
<td></td>
<td>BWG</td>
<td>MM</td>
<td>IN</td>
<td>CODE</td>
<td>RANGE CODE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MF</td>
<td>LENGTH</td>
</tr>
<tr>
<td>19.05</td>
<td>0.750</td>
<td>10</td>
<td>3.40</td>
<td>0.134</td>
<td>110 11 0.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
<td>120 12 0.472</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>130 13 0.512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>2.47</td>
<td>0.095</td>
<td>140 14 0.551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>150 15 0.591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>160 16 0.630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>170 17 0.669</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>180 18 0.709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
<td>190 19 0.748</td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
<td>9</td>
<td>3.76</td>
<td>0.148</td>
<td>10 10 0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.40</td>
<td>0.134</td>
<td>110 11 0.433</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
<td>120 12 0.472</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>130 13 0.512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>2.47</td>
<td>0.095</td>
<td>140 14 0.551</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>150 15 0.591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>160 16 0.630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>170 17 0.669</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>180 18 0.709</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
<td>190 19 0.748</td>
</tr>
</tbody>
</table>

eddyfi.com/applications/tubing-applications
<table>
<thead>
<tr>
<th>Tube OD MM</th>
<th>Frequency Code</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.75</td>
<td>210 MF 50-2000 Hz</td>
<td>PRBT-NFT-BBAD-210MF-NZZ</td>
</tr>
<tr>
<td>38.10</td>
<td>270 MF 50-2000 Hz</td>
<td>PRBT-NFT-BBAD-270MF-NZZ</td>
</tr>
<tr>
<td>50.80</td>
<td>380 MF 50-2000 Hz</td>
<td>PRBT-NFT-BBAD-380MF-NZZ</td>
</tr>
</tbody>
</table>
NFA PROBES

Designed to inspect aluminum-finned carbon steel tubes of fin-fan coolers and ferromagnetic heat exchangers. The coil configuration allows reliably detecting and sizing internal defects such as ID pitting, internal cracking at the tubesheets, internal erosion, and wall loss.

FEATURES

- Designed to inspect aluminum-finned carbon steel tubes of fin-fan coolers and ferromagnetic heat exchangers
- High-resolution C-scans of tubes at NFT speeds
- Detect and size defects in a single pass
- Detect axial and circumferential cracks
- Rugged and easy to use—No magnets
- Replaceable hardened-steel wear guides
- Wide variety of probe diameters

<table>
<thead>
<tr>
<th>TUBE OD MM</th>
<th>TUBE WT BWG</th>
<th>DIAMETER CODE</th>
<th>FREQUENCY RANGE MF</th>
<th>POLY CODE LENGTH</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.05</td>
<td>0.750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>124</td>
<td>12.4</td>
<td>0.488</td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
<td>130</td>
<td>13.0</td>
<td>0.512</td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>138</td>
<td>13.8</td>
<td>0.543</td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>142</td>
<td>14.2</td>
<td>0.559</td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>148</td>
<td>14.8</td>
<td>0.583</td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>156</td>
<td>15.6</td>
<td>0.614</td>
</tr>
<tr>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
<td>156</td>
<td>15.6</td>
<td>0.614</td>
</tr>
<tr>
<td>19</td>
<td>1.07</td>
<td>0.042</td>
<td>162</td>
<td>16.2</td>
<td>0.638</td>
</tr>
<tr>
<td>20</td>
<td>0.89</td>
<td>0.035</td>
<td>162</td>
<td>16.2</td>
<td>0.638</td>
</tr>
<tr>
<td>21</td>
<td>0.81</td>
<td>0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.40</td>
<td>0.134</td>
<td>170</td>
<td>17.0</td>
<td>0.669</td>
</tr>
<tr>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
<td>180</td>
<td>18.0</td>
<td>0.709</td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>184</td>
<td>18.4</td>
<td>0.724</td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
<td>188</td>
<td>18.8</td>
<td>0.740</td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>194</td>
<td>19.4</td>
<td>0.764</td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>200</td>
<td>20.0</td>
<td>0.787</td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>206</td>
<td>20.6</td>
<td>0.811</td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>210</td>
<td>21.0</td>
<td>0.827</td>
</tr>
<tr>
<td>18</td>
<td>1.24</td>
<td>0.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.07</td>
<td>0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.89</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUBE OD</td>
<td>TUBE WT</td>
<td>DIAMETER</td>
<td>FREQUENCY</td>
<td>POLY</td>
<td>PART NUMBER</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>MM IN</td>
<td>MM IN</td>
<td>CODE MM IN</td>
<td>CODE RANGE</td>
<td>CODE LENGTH</td>
<td></td>
</tr>
<tr>
<td>31.75</td>
<td>1.250</td>
<td>8 4.19 0.165</td>
<td>218 21.8 0.858</td>
<td>MF 1-40 kHz</td>
<td>PRBT-NFA-BBAA-218MF-NZZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3.40 0.134</td>
<td>230 23.0 0.906</td>
<td>20 20 m (65 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 3.05 0.120</td>
<td>236 23.6 0.929</td>
<td>30 30 m (98 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 2.77 0.109</td>
<td>244 24.4 0.961</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 2.41 0.095</td>
<td>250 25.0 0.984</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 2.11 0.083</td>
<td>256 25.6 1.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 1.83 0.072</td>
<td>262 26.2 1.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 1.65 0.065</td>
<td>268 26.8 1.055</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 1.47 0.058</td>
<td>274 27.4 1.079</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 1.24 0.049</td>
<td>282 28.2 1.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.10</td>
<td>1.500</td>
<td>8 4.19 0.165</td>
<td>282 28.2 1.110</td>
<td>20 20 m (65 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 3.76 0.148</td>
<td>290 29.0 1.142</td>
<td>30 30 m (98 ft.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 3.40 0.134</td>
<td>296 29.6 1.165</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 3.05 0.120</td>
<td>302 30.2 1.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 2.77 0.109</td>
<td>308 30.8 1.212</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 2.41 0.095</td>
<td>314 31.4 1.232</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MFL PROBES

Designed to inspect the aluminum-finned carbon steel tubes of fin-fan coolers. The probe coil configuration enables reliably detecting internal and external defects such as corrosion, erosion, pitting, and circumferential cracking.

FEATURES

- Designed to inspect aluminum-finned carbon steel tubes in fin-fan coolers
- Optimized for internal and external defect detection
- Capable of detecting circumferential cracks
- No ABS drift adapter box necessary
- Replaceable hardened-steel wear guides
- Uncompromising durability
- Optimal saturation level
- Highly kink-resistant cable
- 19-pin Amphenol connector

<table>
<thead>
<tr>
<th>TUBE OD MM</th>
<th>TUBE WT BWG</th>
<th>DIA CODE</th>
<th>POLY CODE</th>
<th>PART NUMBER</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.05</td>
<td>0.750</td>
<td>12</td>
<td>124</td>
<td>PRBT-MFL-ADT-124-NZZ</td>
<td>These probes offer less sensitivity to external defects, because their core sections are significantly smaller than the tube section. Sensitivity to internal defects remains very high.</td>
</tr>
<tr>
<td>20</td>
<td>2.77</td>
<td>0.109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>138</td>
<td>PRBT-MFL-ADT-138-NZZ</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>138</td>
<td>PRBT-MFL-ADT-138-NZZ</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>148</td>
<td>PRBT-MFL-ADT-148-NZZ</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>200</td>
<td>PRBT-MFL-ADT-200-NZZ</td>
<td></td>
</tr>
<tr>
<td>25.40</td>
<td>1.000</td>
<td>9</td>
<td>162</td>
<td>PRBT-MFL-ADT-162-NZZ</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.40</td>
<td>0.134</td>
<td>170</td>
<td>PRBT-MFL-ADT-170-NZZ</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.05</td>
<td>0.120</td>
<td>180</td>
<td>PRBT-MFL-ADT-180-NZZ</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.77</td>
<td>0.109</td>
<td>180</td>
<td>PRBT-MFL-ADT-180-NZZ</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.41</td>
<td>0.095</td>
<td>188</td>
<td>PRBT-MFL-ADT-188-NZZ</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.11</td>
<td>0.083</td>
<td>194</td>
<td>PRBT-MFL-ADT-194-NZZ</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.83</td>
<td>0.072</td>
<td>194</td>
<td>PRBT-MFL-ADT-194-NZZ</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.65</td>
<td>0.065</td>
<td>200</td>
<td>PRBT-MFL-ADT-200-NZZ</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.47</td>
<td>0.058</td>
<td>200</td>
<td>PRBT-MFL-ADT-200-NZZ</td>
<td></td>
</tr>
</tbody>
</table>

TUBE OD is in millimeters (MM) and TUBE WT is in inches (IN). DIA is the diameter in millimeters (MM). POLY is the poly code. PART NUMBER is the product code for the specific configuration. NOTE provides additional information about the product and its suitability for specific applications.
<table>
<thead>
<tr>
<th>TUBE OD MM</th>
<th>TUBE WT BWG</th>
<th>DIAMETER CODE</th>
<th>FREQUENCY CODE</th>
<th>PART NUMBER</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.250</td>
<td>10</td>
<td>3.40</td>
<td>230</td>
<td>20 m (65 ft.)</td>
<td>PRBT-MFL-ADT-230-NZZ</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.05</td>
<td>244</td>
<td>20 m (98 ft.)</td>
<td>PRBT-MFL-ADT-244-NZZ</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.77</td>
<td>244</td>
<td>20 m (65 ft.)</td>
<td>PRBT-MFL-ADT-256-NZZ</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.41</td>
<td>256</td>
<td>20 m (65 ft.)</td>
<td>PRBT-MFL-ADT-256-NZZ</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.11</td>
<td>256</td>
<td>20 m (65 ft.)</td>
<td>PRBT-MFL-ADT-256-NZZ</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.83</td>
<td>256</td>
<td>20 m (65 ft.)</td>
<td>PRBT-MFL-ADT-256-NZZ</td>
</tr>
<tr>
<td>38.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.500</td>
<td>10</td>
<td>3.40</td>
<td>290</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-290-NZZ</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.05</td>
<td>302</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-302-NZZ</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.77</td>
<td>302</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-302-NZZ</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>2.41</td>
<td>315</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-315-NZZ</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>2.11</td>
<td>315</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-315-NZZ</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.83</td>
<td>315</td>
<td>30 m (98 ft.)</td>
<td>PRBT-MFL-ADT-315-NZZ</td>
</tr>
</tbody>
</table>
INTERNAL ROTARY INSPECTION SYSTEMS (IRIS)

IRIS UT leverages ultrasound to inspect ferrous and non-ferrous tubing. Eddyfi IRIS UT kits are particularly versatile, precisely detecting corrosion, pitting, and thinning in a wide range of tube diameters and wall thicknesses.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-KIT-FUL</td>
<td>IRIS kit including (pump and filter sold separately [page 20])</td>
</tr>
<tr>
<td></td>
<td>• 2 turbines</td>
</tr>
<tr>
<td></td>
<td>• 4 centering devices</td>
</tr>
<tr>
<td></td>
<td>• 3 transducers</td>
</tr>
<tr>
<td></td>
<td>• 4 cables (20 m/65 ft.)</td>
</tr>
<tr>
<td></td>
<td>• 1 flood tube adapter</td>
</tr>
<tr>
<td></td>
<td>• 1 repair kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-KIT-FUL-w/MICRO</td>
<td>IRIS kit including (pump and filter sold separately [page 20])</td>
</tr>
<tr>
<td></td>
<td>• 3 turbines</td>
</tr>
<tr>
<td></td>
<td>• 4 centering devices</td>
</tr>
<tr>
<td></td>
<td>• 4 transducers</td>
</tr>
<tr>
<td></td>
<td>• 4 cables (20 m/65 ft.)</td>
</tr>
<tr>
<td></td>
<td>• 1 flood tube adapter</td>
</tr>
<tr>
<td></td>
<td>• 1 repair kit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-KIT-MICRO</td>
<td>IRIS kit including (pump and filter sold separately [page 20])</td>
</tr>
<tr>
<td></td>
<td>• 1 turbine</td>
</tr>
<tr>
<td></td>
<td>• 1 centering devices</td>
</tr>
<tr>
<td></td>
<td>• 1 transducer</td>
</tr>
<tr>
<td></td>
<td>• 1 cable (20 m/65 ft.)</td>
</tr>
</tbody>
</table>
Transducers

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-TD-10M-254</td>
<td>10 MHz, 25.4 mm focal length</td>
<td>IRIS-TD-15M-254</td>
<td>15 MHz, 25.4 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-318</td>
<td>10 MHz, 31.8 mm focal length</td>
<td>IRIS-TD-15M-318</td>
<td>15 MHz, 31.8 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-381</td>
<td>10 MHz, 38.1 mm focal length</td>
<td>IRIS-TD-15M-381</td>
<td>15 MHz, 38.1 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-445</td>
<td>10 MHz, 44.5 mm focal length</td>
<td>IRIS-TD-15M-445</td>
<td>15 MHz, 44.5 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-508</td>
<td>10 MHz, 50.8 mm focal length</td>
<td>IRIS-TD-15M-508</td>
<td>15 MHz, 50.8 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-635</td>
<td>10 MHz, 63.5 mm focal length</td>
<td>IRIS-TD-15M-635</td>
<td>15 MHz, 63.5 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-762</td>
<td>10 MHz, 76.2 mm focal length</td>
<td>IRIS-TD-15M-762</td>
<td>15 MHz, 76.2 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-10M-889</td>
<td>10 MHz, 88.9 mm focal length</td>
<td>IRIS-TD-15M-889</td>
<td>15 MHz, 88.9 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-20M-254</td>
<td>20 MHz, 25.4 mm focal length</td>
<td>IRIS-MTD-20M-191</td>
<td>20 MHz, 19.1 mm focal length</td>
</tr>
<tr>
<td>IRIS-TD-20M-318</td>
<td>20 MHz, 31.8 mm focal length</td>
<td>IRIS-MTD-20M-381</td>
<td>20 MHz, 38.1 mm focal length</td>
</tr>
</tbody>
</table>

Turbines

Eddyfi IRIS turbines are engineered to leverage the impressive Ectane® acquisition rate and deliver optimal results for a wide range of rotation speeds, up to 120 rps. The unique mechanical design significantly reduces the formation of bubbles and allows smooth operation for successful ultrasonic inspections.

Features

- Unequalled rotation speed
- No trapped air bubbles
- Easy maintenance

Centering Devices

Two sets of three spring-loaded arms linked in two directions ensure perfect centering. All the devices are self-contained and removable from the shaft (except the extra-small model) without loss of component or arm pressure. They are available in sizes covering tube ODs 12.7–167.6 mm (0.50–6.60 in).

Features

- Linked arms for better centering
- Self-contained
- Fast and simple assembly
- Easy maintenance
Cables
IRIS UT kits can be equipped with an assortment of cables for various types of inspection conditions.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-CBL-CDXS-SLA-N15</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 15 m (49 ft.) for extra-small centering device with spring-loaded arms</td>
</tr>
<tr>
<td>IRIS-CBL-N15</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 15 m (49 ft.)</td>
</tr>
<tr>
<td>IRIS-CBL-CDXS-SLA-N20</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 20 m (66 ft.) for extra-small centering device with spring-loaded arms</td>
</tr>
<tr>
<td>IRIS-CBL-N20</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 20 m (66 ft.)</td>
</tr>
<tr>
<td>IRIS-CBL-CDXS-SLA-N30</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 30 m (98 ft.) for extra-small centering device with spring-loaded arms</td>
</tr>
<tr>
<td>IRIS-CBL-N30</td>
<td>Nylon, diameter 7.9 mm (0.313 in), 30 m (98 ft.)</td>
</tr>
<tr>
<td>IRIS-CBL-BNC</td>
<td>BNC, 3 m (10 ft.)</td>
</tr>
</tbody>
</table>

ACCESSORIES

Flood Tube Adapters

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-FLOOD-MICRO</td>
<td>For extra-small centering device with spring-loaded arms</td>
</tr>
<tr>
<td>IRIS-FLOOD</td>
<td>Flood tube adapter (two sizes)</td>
</tr>
</tbody>
</table>

Pumps and Filters

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRIS-WPFT-120</td>
<td>120v submersible water pump and filter unit</td>
</tr>
<tr>
<td>IRIS-WPFT-220</td>
<td>240v submersible water pump and filter unit</td>
</tr>
</tbody>
</table>

Encoders

The Eddyfi encoder allows accurately reporting defect positions along tubes by monitoring the movement of the probe. The reliable and simple-to-use encoder mechanism offers superior precision compared to traditional landmarks.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBT-ENC-STD-1-18P-N04</td>
<td>Cable encoder for tubing probe, including fixtures for the flood tube adapter and 4 m (13.1 ft.) cable</td>
</tr>
</tbody>
</table>
IRIS SELECTION TABLE FOR TUBING

Example

- **CDSM-SLA**: Small centering device
- **TB-170**: 17.0 mm (0.67 in) turbine
- **TD-15M-254**: 15 MHz, 25.4 mm (1 in) focal length transducer

<table>
<thead>
<tr>
<th>TUBE WALL THICKNESS</th>
<th>BWG</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td></td>
<td>mm</td>
<td>in</td>
<td>mm</td>
<td>in</td>
<td>mm</td>
<td>in</td>
<td>mm</td>
<td>in</td>
<td>mm</td>
</tr>
<tr>
<td>12.70</td>
<td>0.500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15.87</td>
<td>0.625</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
IRIS SELECTION TABLE FOR PIPING

<table>
<thead>
<tr>
<th>NPS</th>
<th>OD</th>
<th>WALL THICKNESS</th>
<th>UT TRANSDUCERS (mHz, MM, IN)</th>
<th>RECOMMENDED SPEEDS</th>
<th>SMALLEST DECT. DEFECT (TYP.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>63.5</td>
<td>76.2</td>
<td>88.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>88.9</td>
<td>3.500</td>
<td>10</td>
<td>3.05</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>5.49</td>
<td>0.216</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>7.62</td>
<td>0.300</td>
</tr>
<tr>
<td>3½</td>
<td>101.6</td>
<td>4.000</td>
<td>10</td>
<td>3.05</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>5.74</td>
<td>0.226</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>8.08</td>
<td>0.318</td>
</tr>
<tr>
<td>4</td>
<td>114.3</td>
<td>4.500</td>
<td>10</td>
<td>3.05</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>6.02</td>
<td>0.237</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>8.56</td>
<td>0.337</td>
</tr>
<tr>
<td>5</td>
<td>140.6</td>
<td>5.563</td>
<td>10</td>
<td>3.40</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>6.55</td>
<td>0.258</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>9.53</td>
<td>0.375</td>
</tr>
<tr>
<td>6</td>
<td>168.3</td>
<td>6.625</td>
<td>40</td>
<td>7.11</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>10.97</td>
<td>0.432</td>
</tr>
</tbody>
</table>
CABLES AND ADAPTERS

Our premium replacement cables and adapters are perfectly suited to your Eddyfi products

Detachable Probe Cables

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBT-ECT-CBL-095-N15</td>
<td>Premium ECT nylon, diameter 9.5 mm (0.375 in), 15 m (49 ft)</td>
</tr>
<tr>
<td>PRBT-ECT-CBL-095-N20</td>
<td>Premium ECT nylon, diameter 9.5 mm (0.375 in), 20 m (66 ft)</td>
</tr>
<tr>
<td>PRBT-ECT-CBL-095-N30</td>
<td>Premium ECT nylon, diameter 9.5 mm (0.375 in), 30 m (98 ft)</td>
</tr>
</tbody>
</table>

AC Probe Cables

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBT-BBAC-CBL-095-Hxx</td>
<td>Air Conditioner HDPE probe cable for BBAC detachable probe — diameter 9.5 mm (0.375 in), 2 x 4-pin Amphenol connectors, available in 10, 15, 20 or 30 meters</td>
</tr>
<tr>
<td>PRBT-BBAC-CBL-095-Lxx</td>
<td>Air Conditioner LLDPE probe cable for BBAC detachable probe — diameter 9.5 mm (0.375 in), 2 x 4-pin Amphenol connectors, available in 10, 15, 20 or 30 meters</td>
</tr>
</tbody>
</table>

Adapters

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRBT-ADAPT-41×4</td>
<td>41-pin male Amphenol to 4-pin female Amphenol ECT bobbin probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-41×4&4</td>
<td>41-pin male Amphenol to 2x female 4-pin Amphenol dual ECT bobbin probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-41×AC</td>
<td>41-pin male Amphenol to 2x female 4-pin Amphenol air-conditioning probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-41×36</td>
<td>41-pin male Amphenol to 36-pin female Amphenol probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-41×6</td>
<td>41-pin male Amphenol to 6-pin male Jaeger (switchable) ECT bobbin probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-19×3&6</td>
<td>19-pin male Amphenol to 3-pin and 6-pin female Amphenol RFT probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-19×5&6</td>
<td>19-pin male Amphenol to 5-pin ITT Cannon and 6-pin female Amphenol RFT probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-19×3&5&6</td>
<td>19-pin male Amphenol to 5-pin ITT Cannon, 3-pin and 6-pin female Amphenol with 15 dB preamplifier universal RFT probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-19×8</td>
<td>19-pin male Amphenol to 8-pin female Amphenol MFL probe adapter</td>
</tr>
<tr>
<td>PRBT-ADAPT-8×19</td>
<td>8-pin male Amphenol to 19-pin female Amphenol MFL probe adapter</td>
</tr>
</tbody>
</table>